Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.825
Filtrar
1.
J Biol Chem ; 300(3): 105772, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382674

RESUMO

Pre-mRNA splicing is a precise regulated process and is crucial for system development and homeostasis maintenance. Mutations in spliceosomal components have been found in various hematopoietic malignancies (HMs) and have been considered as oncogenic derivers of HMs. However, the role of spliceosomal components in normal and malignant hematopoiesis remains largely unknown. Pre-mRNA processing factor 31 (PRPF31) is a constitutive spliceosomal component, which mutations are associated with autosomal dominant retinitis pigmentosa. PRPF31 was found to be mutated in several HMs, but the function of PRPF31 in normal hematopoiesis has not been explored. In our previous study, we generated a prpf31 knockout (KO) zebrafish line and reported that Prpf31 regulates the survival and differentiation of retinal progenitor cells by modulating the alternative splicing of genes involved in mitosis and DNA repair. In this study, by using the prpf31 KO zebrafish line, we discovered that prpf31 KO zebrafish exhibited severe defects in hematopoietic stem and progenitor cell (HSPC) expansion and its sequentially differentiated lineages. Immunofluorescence results showed that Prpf31-deficient HSPCs underwent malformed mitosis and M phase arrest during HSPC expansion. Transcriptome analysis and experimental validations revealed that Prpf31 deficiency extensively perturbed the alternative splicing of mitosis-related genes. Collectively, our findings elucidate a previously undescribed role for Prpf31 in HSPC expansion, through regulating the alternative splicing of mitosis-related genes.


Assuntos
Fatores de Processamento de RNA , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Desenvolvimento Embrionário , Mutação , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/metabolismo , Células-Tronco/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339020

RESUMO

The mechanism of fish gonadal sex differentiation is complex and regulated by multiple factors. It has been widely known that proper steroidogenesis in Leydig cells and sex-related genes in Sertoli cells play important roles in gonadal sex differentiation. In teleosts, the precise interaction of these signals during the sexual fate determination remains elusive, especially their effect on the bi-potential gonad during the critical stage of sexual fate determination. Recently, all-testis phenotypes have been observed in the cyp17a1-deficient zebrafish and common carp, as well as in cyp19a1a-deficient zebrafish. By mating cyp17a1-deficient fish with transgenic zebrafish Tg(piwil1:EGFP-nanos3UTR), germ cells in the gonads were labelled with enhanced green fluorescent protein (EGFP). We classified the cyp17a1-deficient zebrafish and their control siblings into primordial germ cell (PGC)-rich and -less groups according to the fluorescence area of the EGFP labelling. Intriguingly, the EGFP-labelled bi-potential gonads in cyp17a1+/+ fish from the PGC-rich group were significantly larger than those of the cyp17a1-/- fish at 23 days post-fertilization (dpf). Based on the transcriptome analysis, we observed that the cyp17a1-deficient fish of the PGC-rich group displayed a significantly upregulated expression of amh and gsdf compared to that of control fish. Likewise, the upregulated expressions of amh and gsdf were observed in cyp19a1a-deficient fish as examined at 23 dpf. This upregulation of amh and gsdf could be repressed by treatment with an exogenous supplement of estradiol. Moreover, tamoxifen, an effective antagonist of both estrogen receptor α and ß (ERα and Erß), upregulates the expression of amh and gsdf in wild-type (WT) fish. Using the cyp17a1- and cyp19a1a-deficient zebrafish, we provide evidence to show that the upregulated expression of amh and gsdf due to the compromised estrogen signaling probably determines their sexual fate towards testis differentiation. Collectively, our data suggest that estrogen signaling inhibits the expression of amh and gsdf during the critical time of sexual fate determination, which may broaden the scope of sex steroid hormones in regulating gonadal sex differentiation in fish.


Assuntos
Hormônios Peptídicos , Processos de Determinação Sexual , Peixe-Zebra , Animais , Feminino , Masculino , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Estrogênios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Ovário/metabolismo , Hormônios Peptídicos/genética , Testículo/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Biomolecules ; 14(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38397376

RESUMO

Zebrafish are now widely used to study skeletal development and bone-related diseases. To that end, understanding osteoblast differentiation and function, the expression of essential transcription factors, signaling molecules, and extracellular matrix proteins is crucial. We isolated Sp7-expressing osteoblasts from 4-day-old larvae using a fluorescent reporter. We identified two distinct subpopulations and characterized their specific transcriptome as well as their structural, regulatory, and signaling profile. Based on their differential expression in these subpopulations, we generated mutants for the extracellular matrix protein genes col10a1a and fbln1 to study their functions. The col10a1a-/- mutant larvae display reduced chondrocranium size and decreased bone mineralization, while in adults a reduced vertebral thickness and tissue mineral density, and fusion of the caudal fin vertebrae were observed. In contrast, fbln1-/- mutants showed an increased mineralization of cranial elements and a reduced ceratohyal angle in larvae, while in adults a significantly increased vertebral centra thickness, length, volume, surface area, and tissue mineral density was observed. In addition, absence of the opercle specifically on the right side was observed. Transcriptomic analysis reveals up-regulation of genes involved in collagen biosynthesis and down-regulation of Fgf8 signaling in fbln1-/- mutants. Taken together, our results highlight the importance of bone extracellular matrix protein genes col10a1a and fbln1 in skeletal development and homeostasis.


Assuntos
Colágeno Tipo X , Proteínas da Matriz Extracelular , Osteoblastos , Peixe-Zebra , Animais , Diferenciação Celular , Matriz Extracelular/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Homeostase/genética , Minerais/metabolismo , Osteoblastos/metabolismo , Transcriptoma/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Colágeno Tipo X/genética , Colágeno Tipo X/fisiologia
4.
Cell ; 186(23): 5015-5027.e12, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37949057

RESUMO

Embryonic development is remarkably robust, but temperature stress can degrade its ability to generate animals with invariant anatomy. Phenotypes associated with environmental stress suggest that some cell types are more sensitive to stress than others, but the basis of this sensitivity is unknown. Here, we characterize hundreds of individual zebrafish embryos under temperature stress using whole-animal single-cell RNA sequencing (RNA-seq) to identify cell types and molecular programs driving phenotypic variability. We find that temperature perturbs the normal proportions and gene expression programs of numerous cell types and also introduces asynchrony in developmental timing. The notochord is particularly sensitive to temperature, which we map to a specialized cell type: sheath cells. These cells accumulate misfolded protein at elevated temperature, leading to a cascading structural failure of the notochord and anatomic defects. Our study demonstrates that whole-animal single-cell RNA-seq can identify mechanisms for developmental robustness and pinpoint cell types that constitute key failure points.


Assuntos
Proteostase , Peixe-Zebra , Animais , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Temperatura , Peixe-Zebra/crescimento & desenvolvimento
5.
Int J Mol Sci ; 24(22)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38003696

RESUMO

Both social and motor development play an essential role in an individual's physical, psychological, and social well-being. It is essential to conduct a dynamic analysis at multiple time points during the developmental process as it helps us better understand and evaluate the trajectory and changes in individual development. Recently, some studies found that mutations in the BRSK2 gene may contribute to motor impairments, delays in achieving motor milestones, and deficits in social behavior and communication skills in patients. However, little is known about the dynamic analysis of social and motor development at multiple time points during the development of the brsk2 gene. We generated a novel brsk2-deficient (brsk2ab-/-) zebrafish model through CRISPR/Cas9 editing and conducted comprehensive morphological and neurobehavioral evaluations, including that of locomotor behaviors, social behaviors, and anxiety behaviors from the larval to adult stages of development. Compared to wild-type zebrafish, brsk2ab-/- zebrafish exhibited a catch-up growth pattern of body length and gradually improved locomotor activities during the developmental process. In contrast, multimodal behavior tests showed that the brsk2ab-/- zebrafish displayed escalating social deficiency and anxiety-like behaviors over time. We reported for the first time that the brsk2 gene had dynamic regulatory effects on motor and social development. It helps us understand developmental trends, capture changes, facilitate early interventions, and provide personalized support and development opportunities for individuals.


Assuntos
Proteínas Serina-Treonina Quinases , Peixe-Zebra , Animais , Humanos , Comportamento Animal , Locomoção , Mutação , Comportamento Social , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
6.
Science ; 381(6664): 1331-1337, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37733873

RESUMO

Polycomb repressive complex 2 (PRC2) silences genes through trimethylation of histone H3K27. PRC2 associates with numerous precursor messenger RNAs (pre-mRNAs) and long noncoding RNAs (lncRNAs) with a binding preference for G-quadruplex RNA. In this work, we present a 3.3-Å-resolution cryo-electron microscopy structure of PRC2 bound to a G-quadruplex RNA. Notably, RNA mediates the dimerization of PRC2 by binding both protomers and inducing a protein interface composed of two copies of the catalytic subunit EZH2, thereby blocking nucleosome DNA interaction and histone H3 tail accessibility. Furthermore, an RNA-binding loop of EZH2 facilitates the handoff between RNA and DNA, another activity implicated in PRC2 regulation by RNA. We identified a gain-of-function mutation in this loop that activates PRC2 in zebrafish. Our results reveal mechanisms for RNA-mediated regulation of a chromatin-modifying enzyme.


Assuntos
Quadruplex G , Complexo Repressor Polycomb 2 , Precursores de RNA , RNA Longo não Codificante , Animais , Microscopia Crioeletrônica , Histonas/genética , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/genética , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Mutação com Ganho de Função , Regiões Promotoras Genéticas , Ligação Proteica , Proteína Potenciadora do Homólogo 2 de Zeste/química , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Cristalografia por Raios X , Conformação Proteica , Multimerização Proteica
7.
Development ; 150(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37747266

RESUMO

Periodic patterns drive the formation of a variety of tissues, including skin appendages such as feathers and scales. Skin appendages serve important and diverse functions across vertebrates, yet the mechanisms that regulate their patterning are not fully understood. Here, we have used live imaging to investigate dynamic signals regulating the ontogeny of zebrafish scales. Scales are bony skin appendages that develop sequentially along the anterior-posterior and dorsal-ventral axes to cover the fish in a hexagonal array. We have found that scale development requires cell-cell communication and is coordinated through an active wave mechanism. Using a live transcriptional reporter, we show that a wave of Eda/NF-κB activity precedes scale initiation and is required for scale formation. Experiments decoupling the propagation of the wave from dermal placode formation and osteoblast differentiation demonstrate that the Eda/NF-κB activity wavefront controls the timing of the sequential patterning of scales. Moreover, this decoupling resulted in defects in scale size and significant deviations in the hexagonal patterning of scales. Thus, our results demonstrate that a biochemical traveling wave coordinates scale initiation and proper hexagonal patterning across the fish body.


Assuntos
NF-kappa B , Transdução de Sinais , Pele , Peixe-Zebra , Animais , Comunicação Celular , Diferenciação Celular , NF-kappa B/genética , Transdução de Sinais/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Pele/crescimento & desenvolvimento
8.
Environ Sci Pollut Res Int ; 30(41): 94205-94217, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37526819

RESUMO

To reveal the influence of the phosphorus chemical industry (PCI) on regional water environmental quality and safety, the water quality and ecotoxicological effects of a stream near a phosphorus chemical plant (PCP) in Guizhou Province, southwestern China, were investigated based on water samples collected from the stream. The results showed that the average concentrations of NH3-N, TN, P, F-, Hg, Mn, and Ni were 3.14 mg/L, 30.09 mg/L, 3.34 mg/L, 1.18 mg/L, 1.06 µg/L, 45.82 µg/L, and 11.30 µg/L, respectively. The overall water quality of the stream was in the heavily polluted category, and NH3-N, TN, P, F-, and Hg were the main pollution factors. The degree of pollution was in the order of rainy period > transitional period > dry period, and the most polluted sample site was 1100 m from the PCP. After 28 days of exposure to stream water, there was no significant change in the growth parameters of zebrafish. The gills of zebrafish showed a small amount of epithelial cell detachment and a small amount of inflammatory cell infiltration, and the liver tissue displayed a large amount of hepatocyte degeneration with loose and lightly stained cytoplasm. Compared with the control group, the %DNA in tail, tail length, tail moment, and olive tail moment were significantly increased (p < 0.05), indicating that the water sample caused DNA damage in the peripheral blood erythrocytes of zebrafish. The stream water in the PCI area was found to be polluted and exhibited significant toxicity to zebrafish, which could pose a threat to regional ecological security.


Assuntos
Indústria Química , Rios , Poluentes da Água , Poluição Química da Água , Poluentes da Água/análise , Poluentes da Água/toxicidade , Qualidade da Água , Peixe-Zebra/crescimento & desenvolvimento , Animais , China , Distribuição Aleatória , Rios/química , Brânquias/efeitos dos fármacos , Fígado/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Amônia/análise , Fósforo/análise , Estações do Ano
9.
Sci Total Environ ; 896: 165240, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37406704

RESUMO

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-quinone) is a degradation product of 6PPD, an antioxidant widely used in rubber tires. 6PPD-quinone enters aquatic ecosystems through urban stormwater runoff and has been identified as the chemical behind the urban runoff mortality syndrome in coho salmon. However, the available data suggest that the acute effects of 6PPD-quinone are restricted to a few salmonid species and that the environmental levels of this chemical should be safe for most fish. In this study, larvae of a "tolerant" fish species, Danio rerio, were exposed to three environmental concentrations of 6PPD-quinone for only 24 h, and the effects on exploratory behavior, escape response, nonassociative learning (habituation), neurotransmitter profile, wake/sleep cycle, circadian rhythm, heart rate and oxygen consumption rate were analyzed. Exposure to the two lowest concentrations of 6PPD-quinone resulted in altered exploratory behavior and habituation, an effect consistent with some of the observed changes in the neurotransmitter profile, including increased levels of acetylcholine, norepinephrine, epinephrine and serotonin. Moreover, exposure to the highest concentration tested altered the wake/sleep cycle and the expression of per1a, per3 and cry3a, circadian clock genes involved in the negative feedback loop. Finally, a positive chronotropic effect of 6PPD-quinone was observed in the hearts of the exposed fish. The results of this study emphasize the need for further studies analyzing the effects of 6PPD-quinone in "tolerant" fish species.


Assuntos
Benzoquinonas , Sistema Nervoso Central , Exposição Ambiental , Fenilenodiaminas , Borracha , Poluentes Químicos da Água , Peixe-Zebra , Animais , Benzoquinonas/análise , Benzoquinonas/toxicidade , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/fisiologia , Ecossistema , Larva/efeitos dos fármacos , Larva/metabolismo , Fenilenodiaminas/análise , Fenilenodiaminas/toxicidade , Borracha/química , Borracha/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Mol Neurobiol ; 60(11): 6660-6675, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37474883

RESUMO

Histamine receptors mediate important physiological processes and take part in the pathophysiology of different brain disorders. Histamine receptor 1 (HRH1) is involved in the development of neurotransmitter systems, and its role in neurogenesis has been proposed. Altered HRH1 binding and expression have been detected in the brains of patients with schizophrenia, depression, and autism. Our goal was to assess the role of hrh1 in zebrafish development and neurotransmitter system regulation through the characterization of hrh1-/- fish generated by the CRISPR/Cas9 system. Quantitative PCR, in situ hybridization, and immunocytochemistry were used to study neurotransmitter systems and genes essential for brain development. Additionally, we wanted to reveal the role of this histamine receptor in larval and adult fish behavior using several quantitative behavioral methods including locomotion, thigmotaxis, dark flash and startle response, novel tank diving, and shoaling behavior. Hrh1-/- larvae displayed normal behavior in comparison with hrh1+/+ siblings. Interestingly, a transient abnormal expression of important neurodevelopmental markers was evident in these larvae, as well as a reduction in the number of tyrosine hydroxylase 1 (Th1)-positive cells, th1 mRNA, and hypocretin (hcrt)-positive cells. These abnormalities were not detected in adulthood. In summary, we verified that zebrafish lacking hrh1 present deficits in the dopaminergic and hypocretin systems during early development, but those are compensated by the time fish reach adulthood. However, impaired sociability and anxious-like behavior, along with downregulation of choline O-acetyltransferase a and LIM homeodomain transcription factor Islet1, were displayed by adult fish.


Assuntos
Neurogênese , Receptores Histamínicos H1 , Peixe-Zebra , Animais , Humanos , Histamina/metabolismo , Neurotransmissores/metabolismo , Orexinas/metabolismo , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
11.
Nature ; 618(7965): 543-549, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225983

RESUMO

The development of paired appendages was a key innovation during evolution and facilitated the aquatic to terrestrial transition of vertebrates. Largely derived from the lateral plate mesoderm (LPM), one hypothesis for the evolution of paired fins invokes derivation from unpaired median fins via a pair of lateral fin folds located between pectoral and pelvic fin territories1. Whilst unpaired and paired fins exhibit similar structural and molecular characteristics, no definitive evidence exists for paired lateral fin folds in larvae or adults of any extant or extinct species. As unpaired fin core components are regarded as exclusively derived from paraxial mesoderm, any transition presumes both co-option of a fin developmental programme to the LPM and bilateral duplication2. Here, we identify that the larval zebrafish unpaired pre-anal fin fold (PAFF) is derived from the LPM and thus may represent a developmental intermediate between median and paired fins. We trace the contribution of LPM to the PAFF in both cyclostomes and gnathostomes, supporting the notion that this is an ancient trait of vertebrates. Finally, we observe that the PAFF can be bifurcated by increasing bone morphogenetic protein signalling, generating LPM-derived paired fin folds. Our work provides evidence that lateral fin folds may have existed as embryonic anlage for elaboration to paired fins.


Assuntos
Nadadeiras de Animais , Evolução Biológica , Mesoderma , Peixe-Zebra , Animais , Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/embriologia , Nadadeiras de Animais/crescimento & desenvolvimento , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Mesoderma/anatomia & histologia , Mesoderma/embriologia , Mesoderma/crescimento & desenvolvimento , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas Morfogenéticas Ósseas/metabolismo
12.
Sci Total Environ ; 882: 163595, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37094682

RESUMO

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is a type of p-phenylenediamine (PPD), which is widely used in the manufacture of rubber tires owing to its excellent antiozonant properties. In this study, the developmental cardiotoxicity of 6PPD was evaluated in zebrafish larvae, and the LC50 was approximately 737 µg/L for the larvae at 96 h post fertilization (hpf). In the 6PPD treatment of 100 µg/L, the accumulation concentrations of 6PPD were up to 2658 ng/g in zebrafish larvae, and 6PPD induced significant oxidative stress and cell apoptosis in the early developmental stages of zebrafish. Transcriptome analysis showed that 6PPD exposure could potentially cause cardiotoxicity in larval zebrafish by affecting the transcription of the genes related to the calcium signal pathway and cardiac muscle contraction. The genes related to calcium signaling pathway (slc8a2b, cacna1ab, cacna1da, and pln) were verified by qRT-PCR, which were significantly downregulated in larval zebrafish after exposing to 100 µg/L of 6PPD. Simultaneously, the mRNA levels of the genes related to cardiac functions (myl7, sox9, bmp10, and myh71) also respond accordingly. H&E staining and heart morphology investigation indicated that cardiac malformation occurred in zebrafish larvae exposed to 100 µg/L of 6PPD. Furthermore, the phenotypic observation of transgenic Tg (myl7: EGFP) zebrafish also confirmed that 100 µg/L of 6PPD exposure could change the distance of atria and ventricles of the heart and inhibit some key genes (cacnb3a, ATP2a1l, ryr1b) related to cardiac function in larval zebrafish. These results revealed the toxic effects of 6PPD on the cardiac system of zebrafish larvae.


Assuntos
Cardiopatias Congênitas , Coração , Fenilenodiaminas , Peixe-Zebra , Animais , Embrião não Mamífero/efeitos dos fármacos , Larva/efeitos dos fármacos , Borracha/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Fenilenodiaminas/toxicidade , Coração/efeitos dos fármacos , Coração/crescimento & desenvolvimento , Cardiopatias Congênitas/induzido quimicamente
13.
Zebrafish ; 20(2): 55-66, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37071853

RESUMO

Population aging is a global problem worldwide, and the discovery of antiaging drugs and knowledge of their potential molecular mechanisms are research hotspots in biomedical field. Tetrahydroxystilbene glucoside (TSG) is a natural component isolated from Heshouwu (Polygonum multiflorum Thunb.). It has been widely used to treat various chronic diseases for its remarkable biological activities. In this study, we successfully established aging larval zebrafish by exposing larvae to 2 mM hydrogen peroxide (H2O2). Using this aging model, we assessed the antiaging effect of TSG with different concentrations (25-100 µg/mL). After being treated with H2O2, zebrafish showed the obvious aging-associated phenotypes characterized by higher senescence-associated ß-galactosidase activity, significantly downregulated expression of sirtuin 1 (sirt1) and telomerase reverse transcriptase (tert), and upregulated serpine1 mRNA level compared to the control group. TSG pretreatment delayed the aging process of oxidative stress-induced zebrafish, indicative of the reduced positive rate of senescence-associated ß-galactosidase, improved swimming velocity, and stimulus-response capacity. Further studies proved that TSG could suppress reactive oxygen species production and enhance the activity of antioxidant enzymes superoxide dismutase and catalase. TSG also inhibited the H2O2-induced expressions of inflammation-related genes il-1ß, il-6, cxcl-c1c, and il-8 in aging zebrafish, but it did not affect apoptosis-related genes (bcl-2, bax, and caspase-3) of aging zebrafish. In conclusion, TSG can protect against aging by regulating the antioxidative genes and enzyme activity, as well as inflammation in larval zebrafish, providing insight into the application of TSG for clinical treatment of aging or aging-related diseases.


Assuntos
Envelhecimento , Estilbenos , Peixe-Zebra , Animais , Envelhecimento/efeitos dos fármacos , Antioxidantes/farmacologia , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Estilbenos/farmacologia , Peixe-Zebra/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Inflamação
14.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835165

RESUMO

Emamectin benzoate (EMB) is a widely used pesticide and feed additive in agriculture and aquaculture. It easily enters the aquatic environment through various pathways, thus causing adverse effects on aquatic organisms. However, there are no systematic studies regarding the effects of EMB on the developmental neurotoxicity of aquatic organisms. Therefore, the aim of this study was to evaluate the neurotoxic effects and mechanisms of EMB at different concentrations (0.1, 0.25, 0.5, 1, 2, 4 and 8 µg/mL) using zebrafish as a model. The results showed that EMB significantly inhibited the hatching rate, spontaneous movement, body length, and swim bladder development of zebrafish embryos, as well as significantly increased the malformation rate of zebrafish larvae. In addition, EMB adversely affected the axon length of motor neurons in Tg (hb9: eGFP) zebrafish and central nervous system (CNS) neurons in Tg (HuC: eGFP) zebrafish and significantly inhibited the locomotor behavior of zebrafish larvae. Meanwhile, EMB induced oxidative damage and was accompanied by increasing reactive oxygen species in the brains of zebrafish larvae. In addition, gene expression involvement in oxidative stress-related (cat, sod and Cu/Zn-sod), GABA neural pathway-related (gat1, gabra1, gad1b, abat and glsa), neurodevelopmental-related (syn2a, gfap, elavl3, shha, gap43 and Nrd) and swim bladder development-related (foxa3, pbxla, mnx1, has2 and elovlla) genes was significantly affected by EMB exposure. In conclusion, our study shows that exposure to EMB during the early life stages of zebrafish significantly increases oxidative damage and inhibits early central neuronal development, motor neuron axon growth and swim bladder development, ultimately leading to neurobehavioral changes in juvenile zebrafish.


Assuntos
Ivermectina , Poluentes Químicos da Água , Peixe-Zebra , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/patologia , Larva/metabolismo , Neurônios Motores , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Transtornos do Neurodesenvolvimento/induzido quimicamente
15.
Science ; 379(6627): 71-78, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36603098

RESUMO

The breaking of bilateral symmetry in most vertebrates is critically dependent upon the motile cilia of the embryonic left-right organizer (LRO), which generate a directional fluid flow; however, it remains unclear how this flow is sensed. Here, we demonstrated that immotile LRO cilia are mechanosensors for shear force using a methodological pipeline that combines optical tweezers, light sheet microscopy, and deep learning to permit in vivo analyses in zebrafish. Mechanical manipulation of immotile LRO cilia activated intraciliary calcium transients that required the cation channel Polycystin-2. Furthermore, mechanical force applied to LRO cilia was sufficient to rescue and reverse cardiac situs in zebrafish that lack motile cilia. Thus, LRO cilia are mechanosensitive cellular levers that convert biomechanical forces into calcium signals to instruct left-right asymmetry.


Assuntos
Padronização Corporal , Sinalização do Cálcio , Cálcio , Cílios , Peixe-Zebra , Animais , Cálcio/metabolismo , Cílios/fisiologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo , Canais de Cátion TRPP/metabolismo
16.
Nucleic Acids Res ; 51(2): 501-516, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35929025

RESUMO

Individual cells are basic units of life. Despite extensive efforts to characterize the cellular heterogeneity of different organisms, cross-species comparisons of landscape dynamics have not been achieved. Here, we applied single-cell RNA sequencing (scRNA-seq) to map organism-level cell landscapes at multiple life stages for mice, zebrafish and Drosophila. By integrating the comprehensive dataset of > 2.6 million single cells, we constructed a cross-species cell landscape and identified signatures and common pathways that changed throughout the life span. We identified structural inflammation and mitochondrial dysfunction as the most common hallmarks of organism aging, and found that pharmacological activation of mitochondrial metabolism alleviated aging phenotypes in mice. The cross-species cell landscape with other published datasets were stored in an integrated online portal-Cell Landscape. Our work provides a valuable resource for studying lineage development, maturation and aging.


How many cell types are there in nature? How do they change during the life cycle? These are two fundamental questions that researchers have been trying to understand in the area of biology. In this study, single-cell mRNA sequencing data were used to profile over 2.6 million individual cells from mice, zebrafish and Drosophila at different life stages, 1.3 million of which were newly collected. The comprehensive datasets allow investigators to construct a cross-species cell landscape that helps to reveal the conservation and diversity of cell taxonomies at genetic and regulatory levels. The resources in this study are assembled into a publicly available website at http://bis.zju.edu.cn/cellatlas/.


Assuntos
Análise de Célula Única , Animais , Camundongos , Análise de Sequência de RNA , Peixe-Zebra/crescimento & desenvolvimento , Drosophila/crescimento & desenvolvimento
17.
EMBO Rep ; 24(1): e54984, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36408859

RESUMO

Spinal cord injury (SCI) can cause long-lasting disability in mammals due to the lack of axonal regrowth together with the inability to reinitiate spinal neurogenesis at the injury site. Deciphering the mechanisms that regulate the proliferation and differentiation of neural progenitor cells is critical for understanding spinal neurogenesis after injury. Compared with mammals, zebrafish show a remarkable capability of spinal cord regeneration. Here, we show that Rassf7a, a member of the Ras-association domain family, promotes spinal cord regeneration after injury. Zebrafish larvae harboring a rassf7a mutation show spinal cord regeneration and spinal neurogenesis defects. Live imaging shows abnormal asymmetric neurogenic divisions and spindle orientation defects in mutant neural progenitor cells. In line with this, the expression of rassf7a is enriched in neural progenitor cells. Subcellular analysis shows that Rassf7a localizes to the centrosome and is essential for cell cycle progression. Our data indicate a role for Rassf7a in modulating spindle orientation and the proliferation of neural progenitor cells after spinal cord injury.


Assuntos
Células-Tronco Neurais , Regeneração da Medula Espinal , Fatores de Transcrição , Proteínas de Peixe-Zebra , Animais , Axônios/fisiologia , Mamíferos , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/metabolismo , Neurogênese , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo , Ciclo Celular
18.
Ecotoxicol Environ Saf ; 249: 114352, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508815

RESUMO

Chlorpyrifos-methyl (CPM) is one of the thiophosphate insecticides, and it is mainly metabolized to 3,5,6-trichloro-2-pyridinol (TCP) in the environment. As CPM is a strongly toxic and TCP is persistent in the environment, CPM and TCP need to be evaluate their toxicities using animal model organisms. With this regard, CPM and TCP were treated on zebrafish (Danio rerio) embryos and LC50 values were determined as over 2000 µg/L and 612.5 µg/L, respectively. For the hatchability, CPM did not exhibit any interference, while TCP showed weak inhibition. In the CPM-treated embryos, pericardial edema and bleeding were observed at 48 hpf, but recovered afterwards. The pericardial edema and yolk sac edema were observed in TCP-treated zebrafish embryos at the concentration of 500 µg/L after 72 hpf. TCP induced abnormal heart development and the heartbeat was dramatically decreased in Tg(cmlc2:EGFP) embryos at the level of 500 µg/L. The expression level of heart development-related genes such as gata, myl7, and cacna1c was significantly decreased in the TCP 500 µg/L-treated embryos at the 96 hpf. Taken together, TCP appears to be more toxic than the parent compound towards the zebrafish embryos. It is highly requested that TCP needs to be monitored with a strong public concern because it affects presumably heart development in early-stage aquatic vertebrates.


Assuntos
Clorpirifos , Embrião não Mamífero , Poluentes Químicos da Água , Animais , Edema/induzido quimicamente , Embrião não Mamífero/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Clorpirifos/toxicidade
19.
Proc Natl Acad Sci U S A ; 119(29): e2117090119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858306

RESUMO

Retinal photoreceptors have a distinct transcriptomic profile compared to other neuronal subtypes, likely reflecting their unique cellular morphology and function in the detection of light stimuli by way of the ciliary outer segment. We discovered a layer of this molecular specialization by revealing that the vertebrate retina expresses the largest number of tissue-enriched microexons of all tissue types. A subset of these microexons is included exclusively in photoreceptor transcripts, particularly in genes involved in cilia biogenesis and vesicle-mediated transport. This microexon program is regulated by Srrm3, a paralog of the neural microexon regulator Srrm4. Despite the fact that both proteins positively regulate retina microexons in vitro, only Srrm3 is highly expressed in mature photoreceptors. Its deletion in zebrafish results in widespread down-regulation of microexon inclusion from early developmental stages, followed by other transcriptomic alterations, severe photoreceptor defects, and blindness. These results shed light on the transcriptomic specialization and functionality of photoreceptors, uncovering unique cell type-specific roles for Srrm3 and microexons with implications for retinal diseases.


Assuntos
Proteínas , Segmento Externo das Células Fotorreceptoras da Retina , Fatores de Processamento de Serina-Arginina , Visão Ocular , Animais , Éxons , Deleção de Genes , Humanos , Proteínas/genética , Proteínas/fisiologia , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/fisiologia , Transcriptoma , Visão Ocular/genética , Visão Ocular/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
20.
Biochem Biophys Res Commun ; 604: 123-129, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35303678

RESUMO

Many regulators controlling arterial identity are well described; however, transcription factors that promote vein identity and vascular patterning have remained largely unknown. We previously identified the transcription factors Islet2 (Isl2) and Nr2f1b required for specification of the vein and tip cell identity mediated by notch pathway in zebrafish. However, the interaction between Isl2 and Nr2f1b is not known. In this study, we report that Nr2f2 plays minor roles on vein and intersegmental vessels (ISV) growth and dissect the genetic interactions among the three transcription factors Isl2, Nr2f1b, and Nr2f2 using a combinatorial knockdown strategy. The double knockdown of isl2/nr2f1b, isl2/nr2f2, and nr2f1b/nr2f2 showed the enhanced defects in vasculature including less completed ISV, reduced veins, and ISV cells. We further tested the genetic relationship among these three transcription factors. We found isl2 can regulate the expression of nr2f1b and nr2f2, suggesting a model where Isl2 functions upstream of Nr2f1b and Nr2f2. We hypothsized that Isl2 and Nr2f1b can function together through cis-regulatory binding motifs. In-vitro luciferase assay results, we showed that Isl2 and Nr2f1b can cooperatively enhance gene expression. Moreover, co-immunoprecipitation results indicated that Isl2 and Nr2f1b interact physically. Together, we showed that the interaction of the Nr2f1b and Nr2f2 transcription factors in combination with the Islet2 play coordinated roles in the vascular development of zebrafish.


Assuntos
Artérias , Proteínas com Homeodomínio LIM , Fatores de Transcrição , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Artérias/crescimento & desenvolvimento , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Veias , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...